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ABSTRACT

One of the major challenges in Automatic Drum Tran-
scription (ADT) research is the lack of large-scale labeled
dataset featuring audio with polyphonic mixtures; this limi-
tation around data availability greatly impedes the progress
of data-driven approaches in the context of ADT. To tackle
this issue, we propose a semi-automatic way of compiling a
labeled dataset using the audio-to-MIDI alignment technique.
The resulting dataset consists of 1565 polyphonic mixtures of
music with audio-aligned MIDI ground truth. To validate the
quality and generality of this dataset, an ADT model based on
Convolutional Neural Network (CNN) is trained and evalu-
ated on several publicly available datasets. The evaluation re-
sults suggest that our proposed model, which is trained solely
on the compiled dataset, compares favorably with the state-of-
the-art ADT systems. The result also implies the possibility
of leveraging audio-to-MIDI alignment in creating datasets
for a broader range of audio related tasks.

Index Terms— automatic drum transcription, audio-to-
MIDI alignment, semi-supervised labeling

1. INTRODUCTION

Automatic Drum Transcription (ADT) [1] is a task that in-
volves the isolation and identification of percussive events
from audio signals. Similar to other sub-tasks in Auto-
matic Music Transcription (AMT) [2], a general trend of
adopting data-driven approaches such as Deep Neural Net-
works (DNNs) could be observed in ADT literature over
the past years [3–8]. This increasing popularity of data-
driven systems in ADT has led to the discussion concerning
data insufficiency [1], and different labeled datasets such as
MDB-Drums [9] and RBMA13 [10] have been introduced to
the ADT community in order to address this issue directly.
However, the high cost associated with the manual annotation
process makes it very difficult to scale. As a result, these
datasets are often limited in size and represent only a small
portion of the real problem space. To make further progress
without the intensive labor of creating labeled datasets, var-
ious approaches have been proposed. For instance, Wu and
Lerch proposed to use unlabeled data for training a DNN

model via teacher-student learning paradigm [11], and Choi
and Cho [12] presented an ADT model that can be trained
using unlabeled data via unsupervised learning. In addition
to unlabeled data, the idea of using synthetic data generated
from MIDI sequences has been explored by Vogl et al. [5] and
Cartwright et al. [6]. Similarly, Callender et al. [13] proposed
to build a dataset using electronic drum kits and synthetically
extend the dataset with audio samples from multiple drum
machines. Other techniques, such as data augmentation, have
also been investigated and shown effective in the context
of ADT [7]. Generally speaking, the above-mentioned ap-
proaches are able to provide marginal improvements when
training resources are lacking, however, they still cannot fully
replace the vital role of a labeled dataset.

Recently, an interesting idea of leveraging MIDI and au-
dio data to create a large labeled dataset has been proposed
for piano transcription [14]. In particular, the audio-to-MIDI
alignment technique [15], along with other automated pro-
cesses, has been applied to clean up an extensive collection of
slightly misaligned MIDI and audio sequences. The resulting
dataset was able to support the training of an advanced DNN
architecture, leading towards a promising result.

Inspired by the above-mentioned studies, we explore
the similar idea of extending an existing MIDI dataset for
ADT use cases. The objective is to compile a sizable ADT
dataset with real-world audio recordings and detailed anno-
tations without inducing the intensive labors from the human
annotators. Furthermore, we propose an ADT model that
leverages the state-of-the-art beat tracker [16] in order to
make beat-informed predictions. The contributions of this
work include: (i) a large labeled dataset that contains audio
recordings of 1,565 popular music with audio-aligned MIDI
drum sequences, (ii) a beat-informed CNN model with atten-
tion mechanism for ADT that outperforms the state-of-the-art
system, and (iii) an advanced semi-automatic procedure to
create labeled datasets that could potentially be applied to
other audio related tasks.

2. METHODOLOGY

The system overview is shown in Fig. 1. There are three ma-
jor stages in our proposed method. In the data creation stage,



Fig. 1. Illustration of the proposed drum transcription sys-
tem. The three fundamental stages are: (i) dataset creation,
(ii) training, and (iii) testing. Further explanation of every
single stage is presented in Section 2.

a labeled dataset is created from a large existing MIDI dataset;
this process includes the retrieval of the audio recordings that
correspond to the MIDI data, the alignment between the audio
and the MIDI sequences, and an inspection process for ensur-
ing the data integrity. The resulting Audio-to-MIDI Drum
(A2MD) dataset is subsequently used in the training stage.
During training, the feature representations are extracted from
the audio, and an ADT model is trained using the extracted
features and the MIDI ground truth via supervised learning.
In the testing stage, a similar pipeline is followed by extract-
ing the features and deriving the activation functions of three
drum instruments (i.e., kick drum, snare drum, hihat) using
the trained model from the previous stage. Finally, the ac-
tivation functions are post-processed, and the onsets of each
drum event are returned as the final results. More details are
elaborated in the following sections.

2.1. Dataset creation

In this work, we use the Lakh MIDI dataset [17] to build a
large labeled dataset for ADT tasks; the Lakh dataset is cho-
sen for its large and diverse collection of MIDI sequences.
The original Lakh dataset contains the basic audio-to-MIDI
alignment information (e.g., alignment score), however, it has
the following drawbacks: (i) the audio files are not available
and (ii) most of the drum sequences are not well-aligned. To
address these issues, we propose the following steps to filter
and clean up the Lakh dataset for ADT use cases:

• Audio retrieval: to retrieve the audio files that match the
MIDI data, we first compile a list of songs with higher
alignment scores as reported by Raffel [17]; this list allows
us to ignore the unreliable data and focus on the songs with
higher probabilities of being accurately aligned. Next, we
identify the artist names and titles of these songs from the
metadata; these attributes are used for querying online plat-
forms such as YouTube, and the audio files from the top-10
search results are collected and stored in the MP3 format
with a bit rate of 256 kbps. To select the best matching au-

Name # Tracks Total
Dur. (hr)

ENST 64 1.28
MDB-Drums 23 0.23

RBMA13 30 1.67

A2MD
(Proposed)

Subset Alignment
Level # Tracks Total

Dur. (hr)
L Low 574

34.5M Medium 794
H High 177

Table 1. A comparison between drum datasets. Note that the
size of A2MD is significantly larger than the other existing
datasets in terms of the total duration.

dio from these 10 candidates, the pair-wise similarity scores
between the MIDI-synthesized audio and the downloaded
audio are computed, and the file with the highest similarity
score is chosen.

• Audio-to-MIDI alignment: in this step, we apply the
audio-to-MIDI alignment, an algorithm based on Dynamic
Time Warping (DTW) [17], to align the MIDI ground truth
with the selected audio file. Additionally, We modify the
original algorithm to dynamically search for the optimal
penalty value P in order to quantify the alignment result.
Generally speaking, a higher P is associated with a rela-
tively coarse alignment result. The pair of audio and MIDI
sequence is considered a match if a lower P is returned
after the alignment process. Finally, for the matched pairs,
we adjust the MIDI sequence based on the warping path to
align the drum events with the audio signal.

• Data inspection: as a final step, we apply an automated
inspection process to ensure the validity of the alignment
results. Particularly, we compute another alignment pro-
cess between the isolated drum signal and the MIDI drum
sequence; the drum signal is extracted from the polyphonic
mixture using an existing source separator [18]. Any pair
with a P > 0.7 is discarded. This threshold is chosen based
on our initial data observations. Lastly, a quick spot-check
is performed manually on the polyphonic mixture to ensure
that the MIDI and the audio are identical song.

The resulting dataset (referred to as A2MD) consists of
1565 audio/MIDI pairs as shown in Table 1. According to the
distribution of penalty values, they could be further divided
into A2MD-L (0.4 ≤ P < 0.7), A2MD-M (0.2 ≤ P < 0.4),
and A2MD-H (P < 0.2), which correspond to low, medium,
and high alignment level, respectively.

2.2. Feature extraction

In this processing step, the Constant-Q Transform (CQT)
spectrogram is calculated from input audio with a hop size
of 5.8 ms and a spectral resolution of 12 bins per octave.



Fig. 2. Flowchart of the feature extraction process. The data
processing procedure is presented in Section 2.2.

To prepare a musically meaningful input representation, we
propose a beat-informed segmentation process as shown in
Fig. 2. This process includes the following steps: first, all
the beats and micro beats within the audio track are located
using a state-of-the-art beat tracker [16]; each micro beat is
a 32th note estimated by Tb/8, where Tb is the inter-beat in-
terval. Next, a sliding window of 0.7 s is applied around each
micro beat to divide the CQT spectrogram into overlapping
segments; the size of this sliding window is chosen in order
to cover the duration of most percussive events. Finally, for
every four consecutive segments, a stacked representation
with a dimensionality of {120× 120× 4} is computed as the
input to the ADT model.

2.3. CNN model architecture

We use a CNN-based model to predict the drum activation
functions from the processed spectrogram that contains rich
beat information. This beat-informed CNN model, referred
to as B-CNN, is comprised of five convolutional layers, one
attention layer, and three fully-connected layers. Each con-
volutional layer has 64 filters with the kernel size and stride
equal to (3,3) and (1,1), respectively. The number of neurons
in the fully-connected layer is set to 1,024. For the attention
layer, we used the same design as in [19] with minor adjust-
ments to the input/output dimensionality. The B-CNN model
is trained to minimize the Mean Absolute Error (MAE) be-
tween model output Vpred and groundtruth label Vlabel from
MIDI drum sequence. The loss function can be expressed as
follows:

Ldrum = MAE {Vpred,Vlabel} , (1)

where {Vpred,Vlabel} ∈ Rm×n. m is the number of drum
instruments and n is the duration in terms of micro beat. In
this work, we set m = 3 and n = 4. The B-CNN model
is implemented using Tensorflow1. All the weights are ran-
domly initialized and optimized using Adam [20] optimizer

1https://www.tensorflow.org/, last accessed: 2020.10.19

Fig. 3. Flowchart of the post-processing steps in the testing
stage. The two applied steps are: (i) activation function re-
construction, and (ii) peak-picking. The segmented activation
function generated by B-CNN is reconstructed first. Then, a
peak-picking function is applied to obtain onset peaks.

with a batch size of 128 and a fixed learning rate of 2e-5.
The total number of parameters of B-CNN is around 9.4M.
While training on a system with single 1080 Ti GPU, it takes
around 42 minutes to finish one epoch (loop over the whole
A2MD data). The training process is manually stopped after
15 epochs, and the required time is around 11 hours.

2.4. Post-processing

As shown in Fig. 3, there are two steps to identify drum on-
set locations from the activation functions generated by the
B-CNN model. First, the activation function of each drum in-
strument is reconstructed based on the original time indices.
Then, a peak-picking function, which is similar to the one
used in the previous work [5, 6], is applied to locate the onset
times for each drum instrument. The final output of the post-
processing step is a list containing drum onset predictions.

3. EXPERIMENTAL SETUP

Two sets of experiments are conducted to investigate the
effectiveness of our proposed B-CNN model and A2MD
dataset. In the first set of experiment, we evaluate the per-
formance of B-CNN model by comparing with the state-
of-the-art systems (i.e., the CNN and CRNN as described
in [5]). To ensure the compatibility of the experiment results,
we follow the procedure in [5] and apply 3-fold cross vali-
dation for each of the three public datasets. These datasets
include ENST [21], MDB-Drums [9], and RBMA13 [10] (see
Table. 1).

The second set of the experiment aims to evaluate the
usability of the proposed A2MD dataset. To this end, the
identical B-CNN model architecture is trained using three
subsets of data with different alignment quality in A2MD.
Specifically, the three models are trained using the high-
quality subset (A2MD-H), high- and medium- quality subset
(A2MD-H plus A2MD-M), and the entire dataset (A2MD) re-
spectively. We then use three aforementioned public datasets
(ENST, MDB-Drums, and RBMA13) for testing. It should



Test
dataset

Systems
Trained with ENST/MDB-Drums/RBMA13 Trained with A2MD subsets
CNN [5]
(3-fold)

CRNN [5]
(3-fold)

B-CNN
(3-fold)

B-CNN
(H)

B-CNN
(H+M)

B-CNN
(H+M+L)

ENST 0.72 0.71 0.75 0.69 0.72 0.74
MDB-Drums 0.67 0.67 0.72 0.64 0.70 0.71

RBMA13 0.65 0.63 0.60 0.53 0.57 0.58

Table 2. Overall F-score of systems evaluated on different datasets. The models in the left half table are trained using existing
datasets. The models in the right half table are trained using the combanations of A2MD subset. For the CNN and CRNN model,
we directly report the numbers in previous paper. All the B-CNN models are implemented with the same DNN architecture.

be noted that we intentionally apply different datasets for
training (the proposed A2MD) and testing (the three public
datasets), which is the most generalizable use case.

The evaluation metrics are the conventional precision (P),
recall (R), and F1-score (F). The tolerance window for on-
set matching is 50 ms. For each model, we compute the P, R,
and F for three drum instruments (i.e., kick drum, snare drum,
hihat). However, only the averaged F-scores across three in-
struments are reported here due to the space limitation. Please
refer to our online repository for detailed reports2.

4. RESULTS AND DISCUSSION

The results of the first set of experiment are shown in the left
three columns of Table 2. It can be observed that our proposed
B-CNN model outperforms other existing models (i.e., CNN
and CRNN) both on ENST and MDB-Drums datasets. Par-
ticularly, an obvious improvement can be seen on the ENST
dataset, which may be owing to the lack of data diversity
in ENST. ENST possesses the highest intra-dataset similarity
among all datasets, since it only includes music tracks played
by three drummers. Our B-CNN built based on beat informa-
tion has proven to be efficient in capturing the drum events
in ENST, and even yielded the most favorable results against
the state-of-the-art systems on other two datasets with higher
diversity.

The results of the second set of experiment are shown on
the right side of the Table 2. The key findings are: first, all
of our B-CNN models can achieve comparable performances
with the state-of-the-art systems for all subsets of training
data. This result suggests the usefulness and generalizabil-
ity of our proposed A2MD dataset for training ADT models.
Second, the model performance improves gradually as more
data are included for training. However, the improvement be-
comes marginal when data with lower alignment quality are
added. This result suggests that further improvements could
potentially be achieved by increasing the alignment quality
of A2MD-M and A2MD-L. Finally, the B-CNN trained with
the entire A2MD performs better on ENST and MDB-Drums
datasets, compared to the 3-fold cross validation for CNN and

2https://github.com/Sma1033/adt with a2md, last accessed: 2020.10.19

CRNN. This improvement is worth noting, especially consid-
ering that the training data and testing data of B-CNN are
from diverse datasets. This result highlights the advantage of
having a sizable dataset with high content diversity.

It should be noted that the distinctive music style and
instrumentation of RBMA13 may lead to the mediocre per-
formance of B-CNN models when tested on the RBMA13
dataset. Specifically, the sound tracks in RBMA13 are gen-
erated by electronic drum kits or samplers, which are very
different from the conventional acoustic drum sound in other
datasets, including A2MD. This difference may pose addi-
tional challenges for the beat-tracker or the model, which
causes the sub-optimal performance of B-CNN.

5. CONCLUSION

In this work, we presented a large labeled dataset and a beat-
informed CNN model for ADT tasks. Based on our exper-
iments, the proposed A2MD dataset is able to support the
training of the B-CNN model and lead to promising perfor-
mances. Additionally, the results suggest the applicability
of our semi-automatic process for creating a large labeled
dataset using our adaptation of the audio-to-MIDI alignment
technique. It is worth noting that our proposed B-CNN re-
quires the beat information from a beat-tracker for feature
extraction. To quantify the potential impact from inaccurate
beat-tracking results, more investigations would be required.
In addition, further enhancement of the alignment procedure
can be made to improve the quality of the generated dataset.
Finally, we would like to increase the diversity of A2MD
dataset and include more music genres. We believe this semi-
automatic approach of creating large labeled dataset has the
potential of enabling the creation of more datasets for other
audio related tasks.
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